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Synchronization of the Frenet–Serret Linear
System with a Chaotic Nonlinear System
by Feedback of States
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A synchronization procedure of the generalized type in the sense of Rulkov et al. [Phys.
Rev. E 51, 980 (1995)] is used to impose a nonlinear Malasoma chaotic motion on the
Frenet–Serret system of vectors in the differential geometry of space curves. This could
have application in biological molecular motion.

KEY WORDS: Frenet–Serret equations; Malasoma chaos; Lie derivatives; synchro-
nization.

The Frenet–Serret (FS) vector set is in much use whenever one focuses on
the kinematical properties of space curves. The evolution in time of the FS triad
is one of the most used descriptions of the motion of tubular structures such as
stiff (hard to bend) polymers Kamien (2002). Many biological polymers including
the DNA helical molecule are stiff and their movement is of fundamental interest.
At the mesoscopic level many sources of noise and chaotic behaviour affect in a
substantial way the motion of the biological polymers. In general, one can think
that a synchronization between the motion of the polymers and the chaotic (or
noisy) sources could be achieved in a natural way through some control signal.
We illustrate this idea employing a generalized synchronization procedure based
on the theory of nonlinear control by which we generate a chaotic dynamics of
the FS evolution equations

�̇T = κ · �N
�̇N = τ · �B − κ · �T
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�̇B = −τ · �N.

With this goal in mind, one should first write the FS system in the form

ẋ = Ax + Eu y = Cx, (1)

where x ∈ R3 is the vector having as components the tangent T , normal N and the
binormal B, whereas A is the transfer matrix, E is an initial vector that determines
the channel where the control signal is applied, and C determines the measured
signal of the FS system.

In this way, the main objective from the synchronization standpoint is to force
the states of the slave system, which is the FS system to follow the trajectories of
the master system that, in general, presents a chaotic behaviour. This is achieved
by applying a signal given by U = �(x). We first rewrite the FS system in the
form




�̇T
�̇N
�̇B


 =




0 κ 0

−κ 0 τ

0 −τ 0







�T
�N
�B


 +




�0
�0
�1


 �

y = (c1 c2 c3)




�T
�N
�B


 (2)

where c1 = 1, c2 = 0, c3 = 1. If we choose now B = (0 0 0)T as the input vector,
one gets the open loop FR dynamics. This type of dynamics is shown in Fig. 1
for κ = 1 and τ = 0.9 and initial conditions given by T0 = 0.0024, N0 = 0.0026,
and B0 = 0.0039, where the states of the system are given by the derivatives of
the tangent, normal, and binormal unit vectors, respectively, whereas κ and τ are
the curvature and torsion scalar invariants.

On the other hand, a chaotic oscilator is a dynamic system whose evolution
is difficult to predict. In general, its main feature is the sensibility to the initial
conditions and the variations of the parameters. Thus, its long-term behaviour is
hard to estimate. In the following we use one of the simplest chaotic oscillator
system introduced by Malasoma (2002)

Ẋ1 = X2

Ẋ2 = X3 (3)

Ẋ3 = −αX3 − X1 + X1X2,



Synchronization of the Frenet–Serret Linear System 631

Fig. 1. Three-dimensional dynamics of the Frenet–Serret system with κ = 1 and τ = 0.9.

where α is the bifurcation parameter. In matrix form, we get



Ẋ1

Ẋ2

Ẋ3


 =




0 1 0

0 0 1
−1 X1 −α







X1

X2

X3




y = (1 0 0)x. (4)

This system exhibits chaotic behaviour for 2.0168 < α < 2.0577. The chaotic
evolution is shown in Fig. 2 for α = 2.025 and initial conditions X1 = 0.0022,
X2 = 0.0024, X3 = 0.0039. Having the two systems in the matriceal form, we
choose the Malasoma one as the master system and the FS system as the slave. The
Malasoma dynamics is imposed to the FS motion through the signal U = �(x).
In other words, a nonlinear dynamics is forced upon the FS system leading to its
chaotic behaviour.

To get the chaotic FS system one should achieve the synchronization between
the master and the slave systems. For this, one defines a third system, which refers
to the synchronization error given by the difference in the dynamics of the two
systems, i.e.,

ė1 = κe2 + λ1(XM)

ė2 = τe3 − κe1 + λ2(XM) (5)

ė3 = −τe2 + λ3(XM) − U,
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Fig. 2. Three-dimensional dynamics of the Malasoma system with α = 2.025.

where

λ1 = X2M(1 − κ),

λ2 = X3(1 − τ ) + κX1M (6)

λ3 = −αX3M + X1M(X2M − 1) + τX2M.

The function U = �(e) gives the control action that leads to the synchronization
of the two systems.

Once (5) defined, one simply chooses y = C = (1 0 0)e (or y = e1) as the
output of the error system. In the synchronization approach, one writes y = h(e) =
e1 = X1M − X1S, and consequently the error system (5) can be written in the
general form

Ẋ = f (e) + g(e)U. (7)

The error system (7) should be stabilized at the origin or in an arbitrary small
neighborhood of it. More details on the synchronization conditions are provided
in the papers (Femat and Alvarez-Ramirez, 1997; Solis-Perales et al., 2003) and
can be employed to obtain the control function (Isidori, 1989)

U = −1

γ
(β + δ), (8)

where γ and δ are real-valued functions obtained by means of Lie derivatives of
h(e) as follows

γ = LgL
ρ−1
f h(e), β = L

ρ

f h(e) (9)
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where ρ is a positive integer that determines the relative degree of the system (see
Isidori, 1989). On the other hand, the desired dynamics, i.e., directed towards the
origin, is dictated by

δ = KP 1e1 + KP 2e2 + KP 3e3 (10)

Thus, performing the Lie derivatives and regrouping the terms, we obtain U of the
form

U = −1

κτ
[(−κ2ė1 + κτ ė3) + KP 1e1 + KP 2e2 + KP 3e3]. (11)

Using the change of variables ei = XiM − XiFS, where the latter vector is the
column vector formed by the triad T , N , and B (i = 1, 2, 3), the control can be
written as a function of the states of the two systems

U = �(x) = −1

κτ
[−κ2 (X2 − κN ) − κτ [(−αX3 − X1 + X1X2) + (τN )] + δ],

(12)

where δ = KP 1(X1 − T ) + KP 2(X2 − N ) + KP 3(X3 − B). Notice that γ =
LgL

2
f h(x) = κτ is a nonzero constant. Therefore, the control signal is defined

for any T ,N ,B, X1,X2, and X3. In addition, one should choose the values of the

Fig. 3. Phase locking of the T states of the FS system to the X1 states of the Malasoma system.
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Fig. 4. Phase locking of the N states of the FS system to the X2 states of the Malasoma
system.

constants K
′
P i in such a way that the differences in δ go to zero. Applying the

dynamics generated by (12) leads to the synchronization matrix

XFS =




1 0 0

0 1 0

κ 0 1







X1M

X2M

X3M


 . (13)

From this synchronization matrix one can see that the first two states of both
systems are synchronized. However, the state B = X3M + κX1M is expanded by
the term κX1M, i.e., the state B is the sum of two of the Malasoma oscillator; since
the latter is chaotic, one concludes that the state B is also chaotic.

We display the phase locking between the corresponding phases of the two
oscillators in Figs. 3 and 4 where the phase locking of the states T and X1 and
N and X2, respectively, shows that the two pairs of states are synchronized. In
Fig. 5, we see that the B and X3 states are not synchronized. Thus, following
the terminology of (Rulkov et al., 1995), we are in the situation of a generalized
synchronization. In Fig. 6 the two already synchronized systems are shown in
the three-dimensional space. One can notice that the FS system is ‘above’ the
Malasoma oscillator, and that the two systems are in a chaotic phase. Finally, in
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Fig. 5. Phase behaviour of the states B and X3 of the FS system and Malasoma system,
respectively.

Fig. 6. Plot of the two chaotic attractors once they are synchronized in the generalized form.
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Fig. 7. The control signal U imposed to the Frenet–Serret system in order to display chaos.

Fig. 7, the control signal used to achieve the generalized synchronization of this
paper is displayed.
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